

Sustainably Transforming Graphite for use in Lithium-ion Batteries

NAATBatt LITHIUM BATTERY RECYCLING WORKSHOP VII Montréal, QC Canada August 7–9, 2024

Company Snapshot

Vision	Be the leading global solution for producing battery-grade graphite from Natural Flake Graphite (NFG) & Recycled Li-ion Batteries (LiBs)	
Business Model	JV Operator & Technology Licensor	
Founded	2021 (following 8 years of R&D)	
Location	Montréal QC & Kingston ON	Gillian Holcroft, Kevin Watson, B.Eng., M.Eng. PhD., MBA

Co-Founder & CEO Co-Founder & CTO

Patented Technologies

Patented Technologies

Key Features

Cost-effective Eco-friendly Solutions

- Techno-economics for various scenarios
- In-situ reagent regeneration
- Use of renewable energy
- Potential for zero carbon footprint
- Minimal waste generation

Enabling Technologies

- GraphPure[™] removes purification bottleneck
- Enables domestic supply chains
- No need to ship to and from China
- GraphRenewTM allows graphite recovery
- Enables circular economy

Timeline & Funding

- Technologies proven at lab & pilot-scale (10 kg)
- More than \$9M secured for pilot phase
- Systematic technology scale-up plan
- Demo Plant (300 tpa) basic engineering done
- Capex/Opex completed for GraphPure

Global Industry Support

GraphRenew – Why?

Graphite is a Critical Mineral

- >95% of LiB anode is graphite
- Projected LiB demand = massive looming supply gap
- LiB recyclers focused on recovering more valuable metals
- (Li, Ni, Co, and Mn from cathode)

Spent graphite typically sent to a smelter for burning or to landfill

Not consistent with circularity in Critical Mineral supply chains

OBJECTIVES

- Investigate recovery of graphite from **Black Mass Residue** produced by LiB recyclers
- Evaluate various processing stages, sequences and operating conditions
- Select most promising option and develop conceptual process flowsheet
- Produce purified graphite meeting LiB spec >99.95 wt% C

FEED PREPARATION

- Different options explored
- Sieving, deagglomeration, magnetic separation
- Particle size distribution (PSD) measured
- Different samples characterized

Figure 8 - Bucket #1 <106um, 106um>431um, 431um>2mm, >2mm

FEED CHARACTERISTICS

- Purity ranged from 46 87 wt% C
- (for < 1 mm size)
- Magnetics ranged from 0.50 17.9%
- (Depending on sample and size fraction)
- Average magnetics of 0.83% overall

PROCESSING SEQUENCE

- Loss on ignition (LOI) used to measure wt% C
- LOI measured at each stage
- **Pre-purification Hydromet** processes investigated
- Final Purification processes investigated
- Different operating conditions evaluated

TEST SEQUENCE (Example 1)

- Optimization of operating conditions
- Selection of optimal sequence

TEST SEQUENCE (Example 2)

- Wide range in feed purity
- Even low purity feed can reach spec
- Minimum purity required before final purification

OTHER RESULTS

- Some aspects require careful considerations in process development
 - Contaminants from battery types with different chemistries (non-LiB)
 - HF release
- Composition of raw and purified black mass residue
 - Metals
 - Carbon black
- Typical graphite characterization
 - Key characteristics are maintained
- Preliminary coin cell results are promising

FUTURE PLANS

- Demonstrate commercial viability of GraphRenew[™]
- Semi-continuous pilot plant (20 kg/hr) being installed and commissioned
- Treat bulk feed samples of 500 kg

 Black mass residue from LiB recyclers
 Manufacturing scrap from LiB manufacturers
- Characterize regenerated graphite
- Adjust properties to LiB specifications

 PSD, surface area, tap density
- Test electrochemical performance

GGT Competitive Advantages

Contact: Gillian Holcroft, CEO Gillian@greengraphitetech.com

